Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Brahim El Bali^a* and Peter Y. Zavalij^b

^aDépartement de Chimie, Faculté des Sciences Dhar Mehraz, BP 1796 Atlas 30003, Fès, Morocco, and ^bInstitute for Materials Research and Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902-6000, USA

Correspondence e-mail: belbali@eudoramail.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (Si–O) = 0.006 Å R factor = 0.025 wR factor = 0.064 Data-to-parameter ratio = 16.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Tetragonal form of barium cobalt disilicate, Ba₂CoSi₂O₇

The structure of Ba₂CoSi₂O₇ consists of layers made from corner-sharing of [SiO₄] and [CoO₄] polyhedra. These layers, lying parallel to (001), are linked by Ba···O interactions. Co²⁺ forms flattened CoO₄ tetrahedra (point symmetry $\overline{4}$), which are isolated in the structure. The blue color of the solid might be explained by the coordination mode of the Co atoms. Received 12 March 2003 Accepted 18 March 2003 Online 31 March 2003

Comment

In the mixed-silicate system $MO-TO-SiO_2$, where M is an alkaline earth metal and T is a divalent 3d metal atom, many compounds of type $(M,T)_3$ Si₂O₇ have been reported in the literature: Ca2CoSi2O7 (Kimata, 1982, 1983; Hagiya et al., 1993), Ca_{2.33}Mn_{0.67}Si₂O₇ (Kimata, 1989), Ca₂ZnSi₂O₇ (Warren & Trautz, 1930; Louisnathan, 1969), Sr₂CuSi₂O₇ (Tovar et al., 1998), BaCo₂Si₂O₇ (Adams et al., 1993), Ba₂CoSi₂O₇ (Adams et al., 1996), Ba₂CuSi₂O₇ (Malinovskii, 1984), BaCu₂Si₂O₇ (Janczak et al., 1990), BaZn₂Si₂O₇ (Lin et al., 1999). Adams et al. (1996) did not mention any structure transformation when they reported the monoclinic form of Ba₂CoSi₂O₇. The present paper deals with a new tetragonal form of this mixed silicate, which is isostructural with $Ca_2MSi_2O_7$ (M = Co and Zn). Crystals of the new phase were obtained quite by chance during the melting of a phosphate powder in a crucible made of quartz. The structure of Ba₂CoSi₂O₇ can de described as a two-dimensional framework of [SiO₄] and [CoO₄] tetrahedra sharing corners. These layers, lying parallel to the (001) plane at around x = 0.5, are interconnected by barium ions, as shown in Fig. 1. Alternatively, the structure can be described as being composed of BaO₈ polyhedra sharing edges and faces to form a sheet. These Ba sheets share corners with Si₂O₇ moieties to

Figure 1 Perspective view of the crystal structure of $Ba_2CoSi_2O_7$. Yellow

 \odot 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Acta Cryst. (2003). E59, i59–i61

polyhedra [Si₂O₇], blue polyhedra [CoO₄] and grey spheres Ba²

inorganic papers

Figure 2

Figure 3

Projection of the structure on to the ab plane. Blue polyhedra $[BaO_8]$, yellow polyhedra $[Si_2O_7]$ and pink spheres Co^{2+} .

Coordination of Co²⁺ in Ba₂CoSi₂O₇. Colors as in Fig. 2.

delimit tunnels, parallel to [001], which contain Co²⁺ cations. Fig. 2 depicts the projection of the structure on to the *ab* plane.

 Co^{2+} forms flattened CoO_4 tetrahedra (point symmetry $\overline{4}$), the four apices of the tetrahedron belonging to four $Si_2O_7^{4-}$ groups, as shown in Fig. 3. The average Co-O distance of 1.964 Å can be compared with the value of 1.926 Å in Ca₂CoSi₂O₇. Co²⁺ polyhedra are isolated in the structure, the shortest Co···Co distance being 5.778 Å, larger than that reported in Ca₂CoSi₂O₇ (5.015 Å; Kimata, 1982). The blue color is a consequence of the geometry of Co^{2+} . In general, for many compounds containing this metal in the 2+ oxidation state, the rose color points to an octahedral configuration, while a blue color indicates tetrahedral geometry.

Ba²⁺ occupies an eight-coordinated site. The average Ba···O distance is 2.763 Å, a value close to the value of 2.814 Å reported for $Ba_2CuSi_2O_7$, but it is shorter than the value of 2.927 Å in monoclinic Ba₂CoSi₂O₇. Such a value has also been reported for phosphates such as Ba2Ni(PO4)2 (2.765 Å; El Bali et al., 1994).

Figure 4

Perspective view of a fragment of Ba2CoSi2O7, showing the atomic connectivity, with the atom labeling. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes for equivalent atoms: (i) x - 1, y, z; (ii) x, y, z - 1; (iii) 1 - x, -y, z; (iv) 1 - x, -y, z - 1; (v) y, $1 - x, -z; (vi) y, 1 - x, 1 - z; (vii) -y, x - 1, 1 - z; (viii) x - \frac{1}{2}, -y + \frac{1}{2}, 1 - z; (ix) y + \frac{1}{2}, x - \frac{1}{2}, z; (x) y + \frac{1}{2}, x - \frac{1}{2}, z - 1.$

Tetrahedral Si⁴⁺ in two neighboring SiO₄ units share O1 to form the pyrosilicate $[Si_2O_7]^{4-}$ group. Si-O distances range from 1.592 (6) to 1.664 (3) Å, with an average of 1.633 Å, similar to other mixed pyrosilicates; e.g. 1.636 Å in Ca₂ZnSi₂O₇ and 1.628 Å in Ba₂CuSi₂O₇. Si₂O₇ can be also characterized by its almost eclipsed conformation and the bridging angle $\varphi(Si,O,Si)$ of 142.8 (5)°, a value close to those reported in the homologous phases; e.g. 142.2° in monoclinic Ba₂CoSi₂O₇, 142° in Ba₂CuSi₂O₇ and 141.5° in Ba₂ZnSi₂O₇. Fig. 4 shows a fragment of Ba₂CoSi₂O₇ with the atomic connectivity.

Experimental

A mixture of BaCO₃, CoCO₃ and (NH₄)₂HPO₄, in a 2:1:2 molar ratio, was ground and heated progressively to 1173 K. The resulting powder was then melted at 1423 K in a crucible made of quartz. Two materials were obtained, viz. blue crystals of the title compound and an unknown amorphous substance.

Crystal data

Ba2CoSi2O7	Mo $K\alpha$ radiation
$M_{\rm r} = 501.79$	Cell parameters from 922
Tetragonal $P\overline{4}2.m$	reflections
a = 81709(7) Å	$\theta = 3.6 - 30.3^{\circ}$
$c = 5.3374 (7) \text{\AA}$	$\mu = 13.56 \text{ mm}^{-1}$
$V = 356.34(6) Å^3$	$\mu = 13.50 \text{ mm}$ T = 203 (2) K
V = 350.54(0) A	$I = 255 (2) \mathbf{R}$
L = 2	$0.12 \times 0.05 \times 0.05$
$D_x = 4.677 \text{ Mg m}$	$0.13 \times 0.05 \times 0.05 \text{ mm}$
Data collection	
Bruker SMART CCD area-detector	575 independent reflections
diffractometer	536 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.026$
Absorption correction: multi-scan	$\theta_{\rm max} = 30.5^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -11 \rightarrow 6$
$T_{\min} = 0.392, \ T_{\max} = 0.522$	$k = -8 \rightarrow 11$
1383 measured reflections	$l = -7 \rightarrow 7$

Refinement

Refinement on F^2	$(\Delta/\sigma)_{\rm max} < 0.001$
$R[F^2 > 2\sigma(F^2)] = 0.025$	$\Delta \rho_{\rm max} = 1.04 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.064$	$\Delta \rho_{\rm min} = -0.87 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.18	Absolute structure: Flack (1983),
575 reflections	216 Friedel pairs
34 parameters	Flack parameter = $-0.12(7)$
$w = 1/[\sigma^2(F_o^2) + (0.0223P)^2]$	
+ 0.683P]	
where $P = (F_o^2 + 2F_c^2)/3$	

Table 1

Selected geometric parameters (Å).

Ba1-O3 ^v	2.628 (6)	Co1-O2 ^{vii}	1.964 (4)
Ba1-O2 ^{xi}	2.681 (4)	Si1-O3	1.592 (6)
Ba1-O1 ⁱⁱ	2.738 (6)	Si1-O2	1.637 (5)
Ba1-O3	2.800(5)	Si1-O1	1.664 (3)
Ba1-O2 ^{iv}	2.888 (4)		

Symmetry codes: (v) y, 1-x, -z; (xi) $x - \frac{1}{2}, \frac{1}{2} - y, 1-z;$ (ii) x, y, z - 1; (iv) 1-x, -y, z - 1; (vii) -y, x - 1, 1 - z.

The maximum electron-density peak is 0.87 Å from Ba1.

Data collection: *SMART* (Bruker, 1999); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1990); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ATOMS* (Dowty, 1999); software used to prepare material for publication: *SHELXL*97.

BEB thanks Professor M. Dusek (Institute of Physics, Prague, Czech Republic) for his kind collaboration.

References

- Adams, R. D., Layland, R., Datta, T. & Payen, C. (1993). Polyhedron, 12, 2075–2077.
- Adams, R. D., Layland, R., Payen, C. & Datta, T. (1996). Inorg. Chem. 35, 3492–3497.
- Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dowty, E. (1999). ATOMS for Windows and Macintosh. Version 5. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
- El Bali, B., Boukhari, A., Aride, J., Belaiche, M., Abraham, F. & Drillon, M. (1994). Eur. J. Solid State Inorg. Chem. 31, 61–73.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Hagiya, K., Ohmasa, M. & Iishi, K. (1993). Acta Cryst. B49, 172-179.
- Janczak, J., Kubiak, R. & Glowiak, T. (1990). Acta Cryst. C46, 1383-1385.
- Kimata, M. (1982). Naturwissenschaften, 69, 40-41.
- Kimata, M. (1983). Neues Jahrb. Mineral. Abh. 146, 221-241.
- Kimata, M. (1989). Mineral. Mag. 53, 625-631.
- Lin, J. H., Lu, G. X., Du, J., Su, M. Z., Loong, C.-K. & Richardson, J. W. (1999). J. Phys. Chem. Solids, 60, 975–983.
- Louisnathan, S. J. (1969). Z. Kristallogr. Kristallgeom. Kristallphys. Kristallchem. 130, 427–437.
- Malinovskii, Yu A. (1984). Dokl. Akad. Nauk SSSR, 278, 616-619.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Tovar, M., Dinnebier, R. E. & Eysel, W. (1998). Mater. Sci. Forum, 278, 750-755.
- Warren, B. E. & Trautz, O. R. (1930). Z. Kristallogr. Kristallgeom. Kristallphys. Kristallchem. 75, 525–528.