Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Brahim El Balia* and Peter Y. Zavalij ${ }^{\text {b }}$

${ }^{\text {a }}$ Département de Chimie, Faculté des Sciences Dhar Mehraz, BP 1796 Atlas 30003, Fès, Morocco, and ${ }^{\mathbf{b}}$ Institute for Materials Research and Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902-6000, USA

Correspondence e-mail:
belbali@eudoramail.com

Key indicators
Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{Si}-\mathrm{O})=0.006 \AA$
R factor $=0.025$
$w R$ factor $=0.064$
Data-to-parameter ratio $=16.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Tetragonal form of barium cobalt disilicate, $\mathrm{Ba}_{2} \mathrm{CoSi}_{2} \mathrm{O}_{7}$

The structure of $\mathrm{Ba}_{2} \mathrm{CoSi}_{2} \mathrm{O}_{7}$ consists of layers made from corner-sharing of $\left[\mathrm{SiO}_{4}\right]$ and $\left[\mathrm{CoO}_{4}\right]$ polyhedra. These layers, lying parallel to (001), are linked by $\mathrm{Ba} \cdots \mathrm{O}$ interactions. Co^{2+} forms flattened CoO_{4} tetrahedra (point symmetry $\overline{4}$), which are isolated in the structure. The blue color of the solid might be explained by the coordination mode of the Co atoms.

Comment

In the mixed-silicate system $\mathrm{MO}-\mathrm{TO}-\mathrm{SiO}_{2}$, where M is an alkaline earth metal and T is a divalent $3 d$ metal atom, many compounds of type $(M, T)_{3} \mathrm{Si}_{2} \mathrm{O}_{7}$ have been reported in the literature: $\mathrm{Ca}_{2} \mathrm{CoSi}_{2} \mathrm{O}_{7}$ (Kimata, 1982, 1983; Hagiya et al., 1993), $\mathrm{Ca}_{2.33} \mathrm{Mn}_{0.67} \mathrm{Si}_{2} \mathrm{O}_{7}$ (Kimata, 1989), $\mathrm{Ca}_{2} \mathrm{ZnSi}_{2} \mathrm{O}_{7}$ (Warren \& Trautz, 1930; Louisnathan, 1969), $\mathrm{Sr}_{2} \mathrm{CuSi}_{2} \mathrm{O}_{7}$ (Tovar et al., 1998), $\mathrm{BaCo}_{2} \mathrm{Si}_{2} \mathrm{O}_{7}$ (Adams et al., 1993), $\mathrm{Ba}_{2} \mathrm{CoSi}_{2} \mathrm{O}_{7}$ (Adams et al., 1996), $\mathrm{Ba}_{2} \mathrm{CuSi}_{2} \mathrm{O}_{7}$ (Malinovskii, 1984), $\mathrm{BaCu}_{2} \mathrm{Si}_{2} \mathrm{O}_{7}$ (Janczak et al., 1990), $\mathrm{BaZn}_{2} \mathrm{Si}_{2} \mathrm{O}_{7}$ (Lin et al., 1999). Adams et al. (1996) did not mention any structure transformation when they reported the monoclinic form of $\mathrm{Ba}_{2} \mathrm{CoSi}_{2} \mathrm{O}_{7}$. The present paper deals with a new tetragonal form of this mixed silicate, which is isostructural with $\mathrm{Ca}_{2} M \mathrm{Si}_{2} \mathrm{O}_{7}$ ($M=\mathrm{Co}$ and Zn). Crystals of the new phase were obtained quite by chance during the melting of a phosphate powder in a crucible made of quartz. The structure of $\mathrm{Ba}_{2} \mathrm{CoSi}_{2} \mathrm{O}_{7}$ can de described as a two-dimensional framework of $\left[\mathrm{SiO}_{4}\right]$ and $\left[\mathrm{CoO}_{4}\right]$ tetrahedra sharing corners. These layers, lying parallel to the (001) plane at around $x=0.5$, are interconnected by barium ions, as shown in Fig. 1. Alternatively, the structure can be described as being composed of BaO_{8} polyhedra sharing edges and faces to form a sheet. These Ba sheets share corners with $\mathrm{Si}_{2} \mathrm{O}_{7}$ moieties to

Figure 1
Perspective view of the crystal structure of $\mathrm{Ba}_{2} \mathrm{CoSi}_{2} \mathrm{O}_{7}$. Yellow polyhedra $\left[\mathrm{Si}_{2} \mathrm{O}_{7}\right]$, blue polyhedra $\left[\mathrm{CoO}_{4}\right]$ and grey spheres Ba^{2+}.

Received 12 March 2003 Accepted 18 March 2003 Online 31 March 2003
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Figure 2
Projection of the structure on to the $a b$ plane. Blue polyhedra $\left[\mathrm{BaO}_{8}\right]$, yellow polyhedra $\left[\mathrm{Si}_{2} \mathrm{O}_{7}\right]$ and pink spheres Co^{2+}.

Figure 3

Coordination of Co^{2+} in $\mathrm{Ba}_{2} \mathrm{CoSi}_{2} \mathrm{O}_{7}$. Colors as in Fig. 2.
delimit tunnels, parallel to [001], which contain Co^{2+} cations. Fig. 2 depicts the projection of the structure on to the $a b$ plane.
Co^{2+} forms flattened CoO_{4} tetrahedra (point symmetry $\overline{4}$), the four apices of the tetrahedron belonging to four $\mathrm{Si}_{2} \mathrm{O}_{7}{ }^{4-}$ groups, as shown in Fig. 3. The average $\mathrm{Co}-\mathrm{O}$ distance of $1.964 \AA$ can be compared with the value of $1.926 \AA$ in $\mathrm{Ca}_{2} \mathrm{CoSi}_{2} \mathrm{O}_{7} . \mathrm{Co}^{2+}$ polyhedra are isolated in the structure, the shortest Co \cdots Co distance being $5.778 \AA$, larger than that reported in $\mathrm{Ca}_{2} \mathrm{CoSi}_{2} \mathrm{O}_{7}$ ($5.015 \AA$ § ; Kimata, 1982). The blue color is a consequence of the geometry of Co^{2+}. In general, for many compounds containing this metal in the $2+$ oxidation state, the rose color points to an octahedral configuration, while a blue color indicates tetrahedral geometry.
Ba^{2+} occupies an eight-coordinated site. The average $\mathrm{Ba} \cdots \mathrm{O}$ distance is $2.763 \AA$, a value close to the value of $2.814 \AA$ reported for $\mathrm{Ba}_{2} \mathrm{CuSi}_{2} \mathrm{O}_{7}$, but it is shorter than the value of $2.927 \AA$ in monoclinic $\mathrm{Ba}_{2} \mathrm{CoSi}_{2} \mathrm{O}_{7}$. Such a value has also been reported for phosphates such as $\mathrm{Ba}_{2} \mathrm{Ni}\left(\mathrm{PO}_{4}\right)_{2}$ (2.765 Å; El Bali et al., 1994).

Figure 4
Perspective view of a fragment of $\mathrm{Ba}_{2} \mathrm{CoSi}_{2} \mathrm{O}_{7}$, showing the atomic connectivity, with the atom labeling. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes for equivalent atoms: (i) $x-1, y, z$; (ii) $x, y, z-1$; (iii) $1-x,-y, z$; (iv) $1-x,-y, z-1$; (v) y, $1-x,-z$; (vi) $y, 1-x, 1-z$; (vii) $-y, x-1,1-z$; (viii) $x-\frac{1}{2},-y+\frac{1}{2}$, $1-z$; (ix) $y+\frac{1}{2}, x-\frac{1}{2}, z ;(\mathrm{x}) y+\frac{1}{2}, x-\frac{1}{2}, z-1$.

Tetrahedral Si^{4+} in two neighboring SiO_{4} units share O 1 to form the pyrosilicate $\left[\mathrm{Si}_{2} \mathrm{O}_{7}\right]^{4-}$ group. $\mathrm{Si}-\mathrm{O}$ distances range from 1.592 (6) to 1.664 (3) \AA, with an average of $1.633 \AA$, similar to other mixed pyrosilicates; e.g. $1.636 \AA$ in $\mathrm{Ca}_{2} \mathrm{ZnSi}_{2} \mathrm{O}_{7}$ and $1.628 \AA$ in $\mathrm{Ba}_{2} \mathrm{CuSi}_{2} \mathrm{O}_{7} . \mathrm{Si}_{2} \mathrm{O}_{7}$ can be also characterized by its almost eclipsed conformation and the bridging angle $\varphi(\mathrm{Si}, \mathrm{O}, \mathrm{Si})$ of $142.8(5)^{\circ}$, a value close to those reported in the homologous phases; e.g. 142.2° in monoclinic $\mathrm{Ba}_{2} \mathrm{CoSi}_{2} \mathrm{O}_{7}, 142^{\circ}$ in $\mathrm{Ba}_{2} \mathrm{CuSi}_{2} \mathrm{O}_{7}$ and 141.5° in $\mathrm{Ba}_{2} \mathrm{ZnSi}_{2} \mathrm{O}_{7}$. Fig. 4 shows a fragment of $\mathrm{Ba}_{2} \mathrm{CoSi}_{2} \mathrm{O}_{7}$ with the atomic connectivity.

Experimental

A mixture of $\mathrm{BaCO}_{3}, \mathrm{CoCO}_{3}$ and $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$, in a 2:1:2 molar ratio, was ground and heated progressively to 1173 K . The resulting powder was then melted at 1423 K in a crucible made of quartz. Two materials were obtained, viz. blue crystals of the title compound and an unknown amorphous substance.

Crystal data

$\mathrm{Ba}_{2} \mathrm{CoSi}_{2} \mathrm{O}_{7}$
$M_{r}=501.79$
Tetragonal, $P \overline{4} 2_{1} m$
$a=8.1709$ (7) A
$c=5.3374$ (7) \AA
$V=356.34(6) \AA^{3}$
$Z=2$
$D_{x}=4.677 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker SMART CCD area-detector

diffractometer

ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.392, T_{\text {max }}=0.522$
1383 measured reflections

Mo $K \alpha$ radiation
Cell parameters from 922 reflections
$\theta=3.6-30.3^{\circ}$
$\mu=13.56 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, intense blue
$0.13 \times 0.05 \times 0.05 \mathrm{~mm}$

575 independent reflections
536 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=30.5^{\circ}$
$h=-11 \rightarrow 6$
$k=-8 \rightarrow 11$
$l=-7 \rightarrow 7$

inorganic papers

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.064$
$S=1.18$
575 reflections
34 parameters

$=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0223 P)^{2}\right.$
$\quad+0.683 P]$
\quad where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$

Table 1
Selected geometric parameters (\AA).

$\mathrm{Ba} 1-\mathrm{O} 3^{\mathrm{v}}$	$2.628(6)$	$\mathrm{Co} 1-\mathrm{O} 2^{\text {vii }}$	$1.964(4)$
$\mathrm{Ba} 1-\mathrm{O} 2^{\mathrm{xi}}$	$2.681(4)$	$\mathrm{Si} 1-\mathrm{O} 3$	$1.592(6)$
$\mathrm{Ba} 1-\mathrm{O} 1^{\mathrm{ii}}$	$2.738(6)$	$\mathrm{Si} 1-\mathrm{O} 2$	$1.637(5)$
$\mathrm{Ba} 1-\mathrm{O} 3$	$2.800(5)$	$\mathrm{Si} 1-\mathrm{O} 1$	$1.664(3)$
$\mathrm{Ba} 1-\mathrm{O} 2^{\text {iv }}$	$2.888(4)$		
Symmetry codes: (v) $y, 1-x,-z ;(\mathrm{xi})$	$x-\frac{1}{2}, \frac{1}{2}-y, 1-z ;$	(ii) $x, y, z-1 ; \quad$ (iv)	
$1-x,-y, z-1 ;(\mathrm{vii})-y, x-1,1-z$.			

The maximum electron-density peak is $0.87 \AA$ from Ba1.
Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ATOMS (Dowty, 1999); software used to prepare material for publication: SHELXL97.

BEB thanks Professor M. Dusek (Institute of Physics, Prague, Czech Republic) for his kind collaboration.

References

Adams, R. D., Layland, R., Datta, T. \& Payen, C. (1993). Polyhedron, 12, 20752077.

Adams, R. D., Layland, R., Payen, C. \& Datta, T. (1996). Inorg. Chem. 35 3492-3497.
Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Dowty, E. (1999). ATOMS for Windows and Macintosh. Version 5. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
El Bali, B., Boukhari, A., Aride, J., Belaiche, M., Abraham, F. \& Drillon, M. (1994). Eur. J. Solid State Inorg. Chem. 31, 61-73.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Hagiya, K., Ohmasa, M. \& Iishi, K. (1993). Acta Cryst. B49, 172-179.
Janczak, J., Kubiak, R. \& Glowiak, T. (1990). Acta Cryst. C46, 1383-1385.
Kimata, M. (1982). Naturwissenschaften, 69, 40-41.
Kimata, M. (1983). Neues Jahrb. Mineral. Abh. 146, 221-241.
Kimata, M. (1989). Mineral. Mag. 53, 625-631.
Lin, J. H., Lu, G. X., Du, J., Su, M. Z., Loong, C.-K. \& Richardson, J. W. (1999). J. Phys. Chem. Solids, 60, 975-983.

Louisnathan, S. J. (1969). Z. Kristallogr. Kristallgeom. Kristallphys. Kristallchem. 130, 427-437.
Malinovskii, Yu A. (1984). Dokl. Akad. Nauk SSSR, 278, 616-619.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Tovar, M., Dinnebier, R. E. \& Eysel, W. (1998). Mater. Sci. Forum, 278, 750755
Warren, B. E. \& Trautz, O. R. (1930). Z. Kristallogr. Kristallgeom. Kristallphys. Kristallchem. 75, 525-528.

